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1. Pythagorean Triples

A Pythagorean triple (a, b, c) consists of three integers a, b, c ∈ Z with a, b ≥ 1
such that a2 + b2 = c2.

The Babylonians produced tablets containing tables of Pythagorean triples. It
is conjectured that they may have known of the formula to generate such triples:
let u and v be any positive integers, and set

(a) a = u2 − v2;
(b) b = 2uv;
(c) c = u2 + v2.

Then

a2 + b2 = (u2 − v2)2 + (2uv)2

= u4 − 2u2v2 + v4 + 4u2v2

= u4 + 2u2v2 + v4

= (u2 + v2)2

= c2.

Thus we have:

Proposition 1. Let u, v ∈ Z and set a = u2 − v2, b = 2uv, and c = u2 + v2. Then
(a, b, c) is a Pythagorean triple.

The equivalent of this scheme for generating Pythagorean triples can be found
in Euclid’s Elements, Book X, Lemma following Proposition 28. We ask if the
converse is true; that is, does this method generate all Pythagorean triples?
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2. Diophantine Equations

A Diophantine equation is an equation of the form

F (x1, . . . , xn) = 0,

where F (x1, . . . , xn) is a polynomial in n variables with integer coefficients. A
solution to a Diophantine equation is a point (a1, . . . , an) ∈ Cn, where ai ∈ Z and
F (a1, . . . , an) = 0.

This is the modern definition. However, Diophantus looked for rational solutions
to polynomial equations with integer (or rational) coefficients. We note that a
rational solution to a polynomial equation produces an integer solution to a modified
polynomial equation, obtained by clearing the denominators; that is, multiply the
expression F (a1, . . . , an) = 0 by the least common multiple of the highest powers
of the denominators of a1, . . . , an to appear in the expression.

Example 1. Pythagorean triples are integer solutions to the polynomial equation
x2 + y2 = z2. Suppose (a, b, c) is such a solution, with a, b, c ∈ Z. Then (a

c , b
c ) is a

rational solution to the equation x2 + y2 = 1. Thus the problem of finding integer
solutions to x2 + y2 = z2 is equivalent to the problem of finding rational solutions
to x2 + y2 = 1.

Example 2. Fermat’s last theorem essentially states that there are no nontrivial
integer solutions to the equation xn + yn = zn for n ≥ 3. Again, this is equivalent
to the nonexistence of nontrivial rational solutions to xn + yn = 1 for n ≥ 3.

Example 3. Fix m,n ∈ Z, and let d = gcd(m,n). The Euclidean algorithm
produces unique solutions to the Diophantine equation mx + ny = d.

An plane algebraic curve is the subset of C2 which is the set of points (a, b) ∈ C2

such that F (a, b) = 0 for some polynomial F (x, y) with coefficients in C. We say
that the curve is defined over Q if these coefficients are in Q. The degree of the
curve is the degree of the polynomial F . A rational point on the curve is a point
on the curve with rational coordinates.

Diophantus studied plane algebraic curves, and looked for rational solutions to
such polynomial equations, which is to say, he attempted to find rational points on
the associated algebraic curve. Keep in mind that the notation used by Diophantus
was very dissimilar to that used today.

Example 4. We see that (a, b, c) is a Pythagorean triple if and only if (a
c , b

c ) is a
rational point on the curve x2 + y2 = 1.

Example 5. Fermat’s Last Theorem amounts to the claim that (1, 0) and (0, 1)
are the only rational points on the curve xn + yn = 1.
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3. Generation of Pythagorean Triples

One technique used by Diophantus to find rational points on a curve was to find
an apparent solution P and intersect the curve with lines through P which have
rational slope. That this works for conic sections is exemplified by the following
propositions.

Proposition 2. Let f(x) = ax2 + bx + c, where a, b, c ∈ Q. If x1, x2 satisfy
f(x) = 0, and x1 ∈ Q, then x2 ∈ Q.

Proof. Suppose x2 6= x1. Set d =
√

b2 − 4ac. Then

x1 =
−b + ud

2a
and x2 =

−b− ud

2a
,

where u = 1 or u = −1. Therefore d = u(2ax1 + b) ∈ Q. Therefore x2 ∈ Q. �

Proposition 3. Let P = (−1, 0) and Q = (a, b) with a2 + b2 = 1 and a > −1.
Then P and Q are distinct points on the unit circle x2 +y2 = 1, and Q is a rational
point if and only if the slope of line through P and Q is rational.

Proof. Let m be the slope of the line through P and Q; then

m =
b

a + 1
,

and the equation of the line through P and Q is y = m(x + 1).
If Q is rational, this means that a, b ∈ Q, so m = b

a+1 ∈ Q.
On the other hand, suppose that the slope is rational. The x-coordinate of the

intersection of the curve and the line satisfies

x2 + (m(x + 1))2 = 1.

This is a quadratic equation whose solutions, for our given m, are x = −1 and
x = a; therefore, a is rational by Proposition 2. �

The problem of finding Pythagoreans triples is equivalent to the problem of
finding rational points on the curve x2 + y2 = 1. Diophantus realized that all such
points could be obtained by running a line with rational slope through the point
P = (−1, 0) and taking the point of intersection with the unit circle. We compute
these points as follows.

Let m ∈ Q; the line with slope m through P is y = m(x+1). Let Q be the other
point of intersection of this line with the unit circle. Substituting m(x + 1) for y in
the equation of the unit circle gives x2 + (m(x + 1))2 = 1, or

(m2 + 1)x2 + 2m2x + (m2 − 1) = 0.

This quadratic equation has solutions

x =
−2m2 ±

√
4m4 − 4(m4 − 1)

2(m2 + 1)
=
−m2 ± 1
m2 + 1

,

so the solution that produces P is x = −1, and the solution that produces Q is

x =
1−m2

1 + m2
.
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Substitute this into the line to get

y =
2m

1 + m2
.

We have shown:

Proposition 4. Let U = {(x, y) ∈ R2 | x2 + y2 = 1} and let P = (−1, 0). The
function

φ : Q → U given by φ(m) =
(1−m2

1 + m2
,

2m

1 + m2

)
produces a bijective correspondence between the rational numbers and the rational
points (other than P ) on the unit circle.

Now plug these values for x and y into the equation of the circle and get(1−m2

1 + m2

)2

+
( 2m

1 + m2

)2

= 1,

therefore
(1−m2)2 + 4m2 = (1 + m2)2.

Let m ∈ Q be positive; then there exist positive u, v ∈ Z such that m = v
u .

Then, substituting this into the above formula and clearing the denominators by
multiplying by u4, we obtain

(u2 − v2)2 + (2uv)2 = (u2 + v2)2.

This shows:

Theorem 1 (Diophantus’ Theorem). Let (a, b, c) be a Pythagorean triple. Then
there exist u, v ∈ Z such that a = u2− v2, b = 2uv, and (consequently) c = u2 + v2.

4. Cubic Equations

Diophantus also applied this technique to cubic equations in two variables, using
the fact that the generic degree three polynomial in one variable has three solutions,
and if two of them are rational, then so is the third.

Given a degree three curve defined over Q by the equation F (x, y) = 0, the
intersection of the curve with a line y = mx+b gives an equation F (x,mx+b) = 0.
If two rational solutions are known, then the third solution must also be rational.

Suppose we find one rational point P = (a, b) on the curve. If we select a
nearby point on the curve and let it approach P , the secant line between the points
approaches the tangent line y = mx + b. Then m is rational, and if this tangent
line intersects the curve in another point, the other point will also be rational. This
is because a is a double root of F (x,mx + b) = 0.

As an aside, we note that this technique re-emerged in the early 19th century
in the following context. In attempting to compute the arclength along an ellipse,
Niels Henrik Abel discovered certain integrals, known as elliptic integrals, with the
property that the natural domain of the inverse of the antiderivative was a torus
as opposed to the Riemann sphere (this is the traditional name for the complex
plane together with a point at ∞). This developed into the study of elliptic curves,
which are curves defined by an equation of the form y2 = f(x), where f(x) is a
cubic polynomial.

In 1835, Carl Gustav Jacob Jacobi created a type of addition of the points on an
elliptic curve, called the chord-tangent law, which can be defined in terms of taking
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lines through points and intersecting them with the curve. Under this addition,
the sum of rational points is also rational, so the set of rational points form an
algebraic system known as an abelian group.

Example 6. Find three rational points on the curve y2 = x3 − 3x2 + 3x + 1.

Solution. We see that (0, 1) and (0,−1) are solutions. Let P = (0, 1); we would
like to find the line tangent to the curve through the point P . Using implicit
differentiation (which was not available to Diophantus), we compute that

2y
dy

dx
= 3x2 − 6x + 3,

so
dy

dx
=

3(x2 − 2x + 1)
2y

.

Set
m =

dy

dx
|P =

3
2
.

If P = (x0, y0) = (0, 1), the tangent line is

y = m(x− x0) + y0 =
3
2
x + 1.

Substitute this into the equation of the curve to get(3
2
x + 1

)2

= x3 − 3x2 + 3x + 1.

Solving for x gives x = 21
4 . Applying this to the line produces y = 71

8 . This is
rational; thus (21

4 , 71
8 ) is a rational point on the curve. �

Exercise 1. The equation y2 = x3 − ax + b defines an elliptic curve.
(a) Use calculus to find all points on the curve with horizontal or vertical

tangents.
(b) Let a = 12 and b = 25. Take a horizontal tangent and intersect it with this

curve to find another rational point.
(c) Let a = 2 and b = 0. Find three rational points on this curve.
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